

數學函式

現實的程式世界

絕對不是像練習題一樣的三兩行所構成

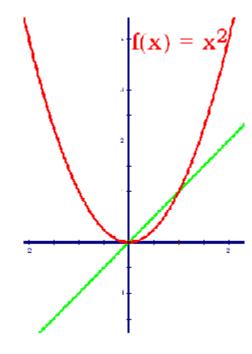
經驗告訴我們,發展與維護大型程式最好的方法,以較小的單元或模組來建構程式

小單元比整個大程式好管理

技巧:各個擊破

C語言程式的構成= 程式設計師的新函式+標準函式庫

輸入/輸出(scanf() /printf()) 字串處理 字元處理 常用的數學運算


- 在數學中,
 - 一個函式表示每個輸入值對應唯一輸出值

例如:面積

$$-f(x)=x^2$$
 $y=x^2$
 $-f(3)=9, f(4)=16$

所有的輸出值的集合: 所有的輸入值的集合: 值域

定義域

#include < cmath >

呼叫數學函式

數學函式的使用

```
#include <cstdio>
#include <cmath > /*引用數學函式*/
int main(){
   prntf("%.2f",sqrt(900.0))
   cout
return 0;}
```

寫下函式名稱,接著是左括號,然後是本函式的引述,最後再一個右括號,

左邊程式可以計算出900的平方根

900.0是sqart()函式的引數,左邊程式可以輸出30.00

函式的引數可以是常數、變數或是運算式,如果c1=14.0, d=2.0, f=4.0的話: prntf("%.2f" ,sqrt(c1+d*f)) 可以計算並且印出14.0+2.0+4.0的平方根,答案是5.00

數學函式庫的資料型別

- •使程式設計師可以執行某些常用的數學運算
- •必須引用數學函式 #include<cmath>
- ·參數類型與返回值類型都是double,double與float的值類似,可以使用%lf(long float)格式轉換說明符輸出

數學函式

Function	Description	Example
sqrt(x)	square root of x	sqrt(900.0) is 30.0 sqrt(9.0) is 3.0
exp(x)	exponential function e^x	exp(1.0) is 2.718282 exp(2.0) is 7.389056
log(x)	natural logarithm of x (base e)	log(2.718282) is 1.0 log(7.389056) is 2.0
log10(x)	logarithm of x (base 10)	log10(1.0) is 0.0 log10(10.0) is 1.0 log10(100.0) is 2.0
fabs(x)	absolute value of x	fabs(5.0) is 5.0 fabs(0.0) is 0.0 fabs(-5.0) is 5.0
ceil(x)	rounds x to the smallest integer not less than x	ceil(9.2) is 10.0 ceil(-9.8) is -9.0
floor(x)	rounds x to the largest integer not greater than x	floor(9.2) is 9.0 floor(-9.8) is -10.0
pow(x, y)	x raised to power $y(x^y)$	pow(2, 7) is 128.0 pow(9, .5) is 3.0
fmod(x, y)	remainder of x/y as a floating point number	fmod(13.657, 2.333) is 1.992
sin(x)	trigonometric sine of x (x in radians)	sin(0.0) is 0.0
cos(x)	trigonometric cosine of <i>x</i> (<i>x</i> in radians)	cos(0.0) is 1.0
tan(x)	trigonometric tangent of x (x in radians)	tan(0.0) is 0.0

再看一個例子,

你就知道,

數學專家有多好

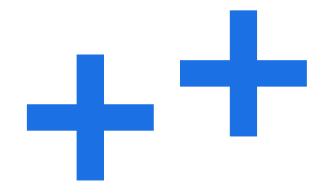
次方問題

請設計一個pow(x,y)函式,

計算x的y次方,

直到x=0停止。

叫上數學專家pow


```
#include <iostream>
#include <cmath>
int main()
  double x,y;
  cin>>x;
  while(x!=0){
     cin>>y;
     cout<<(int)pow(x,y)<<endl;</pre>
     cin>>x;
  return 0;
```

呼叫專家:呼叫pow() 來算x的y次方

不要叫專家,自己來試試吧!

```
#include <iostream>
#include <cmath>
int main()
  int x,y,t,count;
  cin>>x;
  while(x!=0){
     cin>>y;
     t=1;
     count=1;
     while(count<=y){</pre>
        t=t*x;
         count=count+1;
     cout<<t<endl;
     cin>>x;
  return 0;
```


延伸學習

強迫轉型

```
#include <iostream>
#include <cmath>
int main()
                                                        這是強迫轉
                                                      型,將結果由
  double x,y;
                                                       double轉成
  cin>>x;
  while(x!=0){
                                                            int
    cin>>y;
    cout<<(int)pow(x,y)<<endl;</pre>
    cin>>x;
  return 0;
```